A crossed beam and ab initio study of the C 2 ( X 1 R þ g / a 3 Q u ) + C 2 H 2 ( X 1 R þ g ) reactions

نویسندگان

  • Ralf I. Kaiser
  • Nadia Balucani
  • Dmitry O. Charkin
  • Alexander M. Mebel
چکیده

The reaction dynamics of C2 in the ground ( Rg ) and first electronically excited ( 3 Q u) states with the simplest alkyne, acetylene C2H2(X Rg ), were investigated in a crossed molecular beam setup at a nominal collision energy of 24.1 kJ mol . The experimental data expose the existence of a C2/H exchange pathway to form C4H+H. The experimental results were combined with electronic structure calculations on the singlet and triplet C4H2 surfaces. The reaction of C2(X Rg ) was found to proceed via indirect scattering dynamics through addition of C2 to the carbon–carbon triple bond. On the triplet surface, C2(a 3 Q u) adds also to the acetylenic triple bond. Dominated by large impact parameters, this process favors the formation of two short lived chain-like triplet C4H2 isomers. For both reactions, the identification of the butadiynyl radical as a relevant product presents an important step to refine the networks of reactions for the modeling of polycyclic aromatic hydrocarbons formation together with that of their hydrogen deficient precursors in the interstellar medium, in carbon-rich circumstellar envelopes and pre-planetary nebula, and in combustion flames. 2003 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Co-centralizing generalized derivations acting on multilinear polynomials in prime rings

‎Let $R$ be a noncommutative prime ring of‎ ‎characteristic different from $2$‎, ‎$U$ the Utumi quotient ring of $R$‎, ‎$C$ $(=Z(U))$ the extended centroid‎ ‎of $R$‎. ‎Let $0neq ain R$ and $f(x_1,ldots,x_n)$ a multilinear‎ ‎polynomial over $C$ which is noncentral valued on $R$‎. ‎Suppose‎ ‎that $G$ and $H$ are two nonzero generalized derivations of $R$‎ ‎such that $a(H(f(x))f(x)-f(x)G(f(x)))in ...

متن کامل

Enhancement of Lidocaine Analgesic..

|̂ ß ý l û G þ c v þ A K ý l ô o A ë A q A ð õ A Ñ o ô } | ø B ÿ G þ k o k ÿ ì õ Â Ï þ A u Q Þ ú k o A è Û B ÿ G þ k o k ÿ G ú O ñ ù B ü þ ü B G ú 3⁄4 õ o R Þ í ß þ ø í p A û G B u B ü p O ß ñ ý à | ø B ÿ G ý ù õ y þ k o Æ I A ð v B ð þ ô k A ì L r y ß þ o A ü Y A u Q . A ü ò o ô } G þ k o k ÿ k o G v ý B o ÿ A q W p A c þ | ø B ÿ ì d õ Æ ú y ß í þ , ð õ A c þ K ...

متن کامل

Modeling and generation of accentual phrase F0 contours based on discrete HMMs synchronized at mora-unit transitions

p q r s t r t u q v w v x v y w s z { q | v r r s t v } ~ x t z | x t | v x z t |  t w q € z |  v | w ‚ ƒ „ ƒ … † ‡ ˆ ‰ „ Š † ‹ ƒ Œ ‰ „ Œ ˆ ‹  … ƒ ‡ ƒ Ž ˆ Œ Œ ƒ „  † …  ‰ ‘  ‰ Œ ƒ ’ ‹ “ Ž   ” • – — ˜ ™ ˜ š › œ › ˜ › ™ œ  š ž › ž Ÿ  š œ ™ ˜ š  ¡ — ™ Ÿ  ž ¢ ˜ £ – ž › — ¤ œ ¥ œ  ˜ š ˜ ¦ § ̈ © § a « ¬ ­ ® « © ̄ ¬ ° ± ± 2 3 ́ μ ¶ · ̧ 1 o » 1⁄4 1⁄2 3⁄4 ¿ À Á Â Ã Ä Å Æ Ç È Æ É Ê Ë Ì Ê Í Í Ç Å...

متن کامل

A Philos-type theorem for third-order nonlinear retarded dynamic equations

A new Philos-type theorem for a class of third-order nonlinear dynamic equations is presented. Among others, the restrictive condition in terms of the commutativity of the jump and delay operators is removed here. This paper is concerned with oscillation and asymptotic behavior of solutions to a third-order nonlinear delay dynamic equation aððrx D Þ D Þ c D ðtÞ þ f t; xðsðtÞÞ ð Þ¼0; ð1:1Þ where...

متن کامل

WEAKLY g(x)-CLEAN RINGS

A ring $R$ with identity is called ``clean'' if $~$for every element $ain R$, there exist an idempotent $e$ and a unit $u$ in $R$ such that $a=u+e$. Let $C(R)$ denote the center of a ring $R$ and $g(x)$ be a polynomial in $C(R)[x]$. An element $rin R$ is called ``g(x)-clean'' if $r=u+s$ where $g(s)=0$ and $u$ is a unit of $R$ and, $R$ is $g(x)$-clean if every element is $g(x)$-clean. In this pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003